What is Big Data?

Big data is a broad term for data sets so large or complex that traditional data processing applications are inadequate. Challenges include analysis, capture, data curation, search, sharing, storage, transfer, visualization, and information privacy. The term often refers simply to the use of predictive analytics or other certain advanced methods to extract value from data, and seldom to a particular size of data set. Accuracy in big data may lead to more confident decision making. And better decisions can mean greater operational efficiency, cost reductions and reduced risk.

Analysis of data sets can find new correlations, to “spot business trends, prevent diseases, combat crime and so on.” Scientists, practitioners of media and advertising and governments alike regularly meet difficulties with large data sets in areas including Internet search, finance and business informatics. Scientists encounter limitations in e-Science work, including meteorology, genomics, connectomics, complex physics simulations, and biological and environmental research.

Data sets grow in size in part because they are increasingly being gathered by cheap and numerous information-sensing mobile devices, aerial (remote sensing), software logs, cameras, microphones, radio-frequency identification (RFID) readers, and wireless sensor networks. The world’s technological per-capita capacity to store information has roughly doubled every 40 months since the 1980s; as of 2012, every day 2.5 exabytes (2.5×1018) of data were created; The challenge for large enterprises is determining who should own big data initiatives that straddle the entire organization.

Relational database management systems and desktop statistics and visualization packages often have difficulty handling big data. The work instead requires “massively parallel software running on tens, hundreds, or even thousands of servers”.What is considered “big data” varies depending on the capabilities of the users and their tools, and expanding capabilities make Big Data a moving target. Thus, what is considered to be “Big” in one year will become ordinary in later years. “For some organizations, facing hundreds of gigabytes of data for the first time may trigger a need to reconsider data management options. For others, it may take tens or hundreds of terabytes before data size becomes a significant consideration.”

Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process data within a tolerable elapsed time. Big data “size” is a constantly moving target, as of 2012 ranging from a few dozen terabytes to many petabytes of data. Big data is a set of techniques and technologies that require new forms of integration to uncover large hidden values from large datasets that are diverse, complex, and of a massive scale.

Big data has increased the demand of information management specialists in that Software AG, Oracle Corporation, IBM, Microsoft, SAP, EMC, HP and Dell have spent more than $15 billion on software firms specializing in data management and analytics. In 2010, this industry was worth more than $100 billion and was growing at almost 10 percent a year: about twice as fast as the software business as a whole.

Big data requires exceptional technologies to efficiently process large quantities of data within tolerable elapsed times. A 2011 McKinsey report suggests suitable technologies include A/B testing, crowdsourcing, data fusion and integration, genetic algorithms, machine learning, natural language processing, signal processing, simulation, time series analysis and visualisation. Multidimensional big data can also be represented as tensors, which can be more efficiently handled by tensor-based computation, such as multilinear subspace learning. Additional technologies being applied to big data include massively parallel-processing (MPP) databases, search-based applications, data mining, distributed file systems, distributed databases, cloud based infrastructure (applications, storage and computing resources) and the Internet.

Encrypted search and cluster formation in big data was demonstrated in March 2014 at the American Society of Engineering Education. Gautam Siwach engaged at Tackling the challenges of Big Data by MIT Computer Science and Artificial Intelligence Laboratory and Dr. Amir Esmailpour at UNH Research Group investigated the key features of big data as formation of clusters and their interconnections. They focused on the security of big data and the actual orientation of the term towards the presence of different type of data in an encrypted form at cloud interface by providing the raw definitions and real time examples within the technology. Moreover, they proposed an approach for identifying the encoding technique to advance towards an expedited search over encrypted text leading to the security enhancements in big data.

Source: wikipedia